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AN UNSTRUCTURED FINITE-VOLUME METHOD
FOR STRUCTURE–ELECTROSTATICS INTERACTIONS
IN MEMS

Shankhadeep Das, Sanjay R. Mathur, and Jayathi Y. Murthy
NNSA PRISM: Center for Prediction of Reliability, Integrity and
Survivability of Microsystems and School of Mechanical Engineering,
Purdue University, West Lafayette, Indiana, USA

Radio-frequency microelectromechanical systems (RF MEMS) are widely used for contact

actuators and capacitive switches, and involve metal–dielectric contact. In these devices, the

structure is activated by an electrostatic force, whose magnitude changes as the gap closes.

It is advantageous to model fluid and structural mechanics and electrostatics within a single

comprehensive numerical framework to facilitate coupling between them. In this article, we

extend a cell-based finite-volume approach popularly used to simulate fluid flow to charac-

terize structure–electrostatics interactions. The method employs fully implicit second-order

finite-volume discretization of the integral conservation equations governing elastic solid

mechanics and electrostatics, and uses arbitrary convex polyhedral meshes. Results are pre-

sented in this article for a fixed-fixed beam under electrostatic actuation.

1. INTRODUCTION

Radio-frequency microelectromechanical systems (RF MEMS) have wide
applicability in contact actuators and capacitive switches, and involve a fixed-fixed
metallic membrane which makes repeated mechanical contact with a thin dielectric
film [1, 2], as shown in Figure 1. In these devices, the membrane deforms under elec-
trostatic actuation, the magnitude of which increases nonlinearly as the gap width
decreases. Although these devices hold great promise for both civilian and defense
applications, they are prone to failure. Accurate modeling and simulation of these
devices is necessary to better understand failure mechanisms, and to improve their
performance. Since this is a fully coupled multiphysics problem, it is advantageous
to develop a single comprehensive numerical framework for fluid and structural
analysis and electrostatics.

Over the years, finite-element (FE) methods have traditionally been used for
solid-body stress analysis, whereas finite-volume (FV) methods have been used for
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modeling fluid flow and heat transfer problems. A popular FE approach is to solve
the governing differential equations by the method of weighted residuals, and employ
predefined shape functions to approximate the variation of the physical variables
across element boundaries [3]. FV methods, on the other hand, usually employ
second-order spatial discretization of the integral form of the conservation equations
as the starting point [4]. The main advantage of the FV methods is that they ensure
conservation of transported variables. They can easily incorporate coupling and non-
linearity, and are most commonly solved sequentially using iterative solvers. This is
also advantageous in terms of memory requirement for large computational meshes.

Although there are significant differences in the FE and FV approaches, they
essentially solve for similar forms of the governing equations. In fact, FV methods

NOMENCLATURE

A outward-pointing area vector

Aeff effective electrode area

Co Courant number

D diffusion flux vector at cell face

E Young’s modulusbEE modified Young’s modulus

F force on face f

Felec electrostatic force

Fm restoring mechanical force on the

beam

G gradient of the displacement vector

I second moment of inertia

I unit tensor

L length of beam

M flux Jacobian

R residual vector

V cell volume

VPI pull-in voltage

b width of beam

b source vector

ds distance between centroids of cells C0

and C1

en unit vector connecting cell centroids

f body force vector per unit volume

g gap width

g0 gap width with zero applied voltage

h thickness of beam

n surface normal

r position vector

t time

t traction vector

u wave speed

w displacement vector

x solution vector

X natural frequency of beam

a uniform load per unit length

dij Kronecker delta

dxx percentage absolute error in rxx

Dt time step

Dx cell dimension

e deformation strain tensor

eair permittivity of air

e0 permittivity of free space

k Lamé’s coefficient

m Lamé’s coefficient

n Poisson’s ratio

q density

r stress tensor

rt surface charge density

s shear stress

/ electrostatic potential

W secondary gradient component of

diffusion flux

Subscripts

( )b value of the argument on boundary b

( )n component normal to the boundary

surface

( )t component tangential to the

boundary surface

( )i component in the i direction

( )x component in the x direction

( )y component in the y direction

( )f associated with cell face f

( )0 associated with cell C0

( )1 associated with cell C1

( )nb associated with neighboring

cell Cnb

Superscripts

( )N value of the argument at current time

level N

( )T transpose of the argument tensor

( )� nondimensional value of the

argument
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may be considered to be a particular instance of the method of weighted residuals,
with non-Galerkin weighting [5]. It has been shown that the two schemes are equiva-
lent in many respects [6]. This has motivated the researchers to apply FV schemes for
structural analyses and FE schemes for fluid flows. Over the last two decades, vari-
ous researchers have tried to model multiphysics problems within either the FE or
FV framework. On the FE side, the use of finite-element techniques for modeling
fluid flows has been described by various researchers [7–9]. Finite-element models
have also been developed to study fluid–structure interaction (FSI) problems [10–
12]. The deforming-spatial-domain=stabilized space-time (DSD=SST) methodology
has been extensively used to simulate fluid flows with moving boundaries [13–16].
The flow-condition-based interpolation (FCBI) scheme proposed by Bathe [17–20]
to model incompressible flows has been applied to study general fluid flows with
structural interactions [21, 22]. Within the FV framework, Demirdžić et al. [23] first
developed a cell-based FV approach to study thermoelastic problems. This method
has subsequently been extended to unstructured meshes in complex geometries [24],
and to study coupled heat transfer, fluid flow, and stress analysis problems [25]. The
cell-based FV scheme has also been applied to study linear elastic problems [26],
thermo-elasto-plastic stress analysis [27], and thermo-elastic problems in anisotropic
materials [28]. Research has also been carried out to develop a vertex-based FV
scheme to study elastic solid mechanics problems on unstructured meshes [29, 30].
This scheme has also been extended to study elastic=visco-plastic problems [31],
dynamic structural response of elastic solid domains [32], and dynamic fluid–
structure interaction problems [33]. A major advantage of the cell-centered approach
is that force balance on a control volume can be done very easily as a flux balance on
the control-volume faces.

In the 1970s, finite-volume-based approaches were developed to study fluid
flows on simple geometries [34, 35]. These techniques were subsequently extended

Figure 1. RF MEMS device showing nickel membrane, contact pads, and anchors [2] (color figure

available online).
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to unstructured meshes [25, 36]. The desire to extend finite-volume methods to irregu-
lar complex geometries also led to the development of control-volume finite-element
methods (CVFEM) which combined features of finite-element and finite-volume
methods [37, 38]. These methods ensured conservation of transported variables, while
maintaining the geometric flexibility associated with finite-element methods. Over the
last three decades, a number of formulations of both finite-volume and control-
volume finite-element methods have been developed for a wide variety of applications
including single-phase fluid flows [39, 40], multiphase flows [41, 42], solid–liquid
phase change [43], conduction, convection, and radiative heat transfer [44–46], submi-
cron thermal transport [47], solid-body stress analysis [23–33], and combustion [48].
However, the potential of these techniques in developing a unified formulation for
studying multiphysics problems in RF MEMS was never recognized.

In this article we extend the cell-centered FV formulation to study the multi-
physics problem of structural deformation of fixed-fixed beams under electrostatic
actuation. In comparison to similar approaches tried in the past [24–26], the present
method employs complete linearization of the stress tensor, which improves the con-
vergence rate by over two orders of magnitude and is also beneficial in terms of stab-
ility for transient problems. Details of the discretization scheme are presented in this
article. The solver is applied to a variety of steady-state and transient problems, and
is shown to perform satisfactorily by comparison to the analytical solution on these
test cases. It is next applied to study structure–electrostatics interaction in MEMS. A
variable electrostatic force is assumed for this problem, and differences with the case
of constant electrostatic force are shown. Finally, quasi-static and dynamic pull-in
voltages of an RF MEMS device are computed.

2. GOVERNING EQUATIONS

The governing equation for elastic solid-body equilibrium is

q2ðqwÞ
qt2

�r � r ¼ qf ð1Þ

where w is the displacement vector, q is the density, f is the body force vector per unit
volume, and r is the stress tensor. The strain tensor e is defined as

e ¼ 1

2
½rwþ ðrwÞT � ð2Þ

For the case of an elastic solid body, the stress tensor is related to the strain tensor e
by Hooke’s law:

r ¼ 2meþ k trðeÞI ð3Þ

In the above equation, I is the unit tensor, m and k are the Lamé coefficients, and are
given by

m ¼ E

2ð1þ nÞ ð4Þ
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k ¼
nE

ð1þnÞð1�nÞ for plane stress

nE
ð1þnÞð1�2nÞ for plane strain

8<: ð5Þ

where n is Poisson’s ratio and E is Young’s modulus. Using Eqs. (2), (3), (4), and (5),
Eq. (1) can be written as

q2ðqwÞ
qt2

�r � ½mrwþ mðrwÞT þ kI trðrwÞ� ¼ qf ð6Þ

3. FINITE-VOLUME DISCRETIZATION

The governing equation is discretized using the finite-volume discretization
scheme. The computational domain is divided into arbitrary convex polyhedral
meshes. The displacement vector is stored at the cell centroids. The governing equa-
tion for structural dynamics is integrated over the control volumes C0, shown in
Figure 2, to yield cell balances of inertial, surface, and body force terms as follows:

Z
Vo

q2ðqwÞ
qt2

dV �
I
qVo

dA � ½mrw� ¼
I
qVo

dA � ½mðrwÞT þ k ItrðrwÞ� þ
Z
Vo

qf dV ð7Þ

3.1. Rate of Change

Equation (7) is discretized using a partially implicit discretization scheme. The
temporal derivative is calculated using a first-order backward differencing pro-
cedure, using three consecutive time levels as follows:

Z
Vo

q2ðqwÞ
qt2

dV ¼ ðqVÞo
ðDtÞ2

ðwN � 2wN1 þ wN2Þo ð8Þ

where wN is the displacement vector at the current time level, wN1 and wN2 are the
displacement vectors at the previous two time levels, and the time increment is given
by Dt¼ tN� tN1.

Figure 2. Nomenclature associated with cells C0 and C1 for calculation of diffusion flux in unstructured

meshes.
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3.2. Diffusion Term

The second term on the left-hand side (LHS) of Eq. (7) has the form of a
standard diffusion term in a typical finite-volume method (FVM) and is treated
implicitly as

Df ¼
I
qVo

dA � ½mrw� ¼
X
f

mfAf � ðrwÞf ð9Þ

where mf, Af, and (rw)f are the Lamé coefficient, the outward-pointing area vector,
and the gradient of the displacement vector associated with the face f, respectively.
For unstructured meshes, the diffusion term can be decomposed into the primary
gradient and secondary gradient components [49], and written in the following way:

Df ¼
mf
ds

Af � Af

Af � en
ðw1 � w0Þ þWf ð10Þ

Here en is the unit vector aligned with the line joining the centroids of the two cells C0

and C1 on either side of the face f, as shown in Figure 2, and w0 and w1 are the dis-
placement vectors in cells C0 and C1. The quantity Wf is the secondary gradient term,
and is nonzero only for nonorthogonal meshes.

3.3. Transpose and Divergence Terms

Two different formulations of the transpose and divergence parts of the stress
tensor are considered. In the first case, the transpose and divergence terms are
included in an explicit source term. In the second case, these terms are linearized
completely. We describe each approach in turn.

Formulation 1: Explicit Source Term. In this treatment, the transpose and
divergence parts of the stress tensor are treated in an explicit manner, and therefore
included in the source term, along with the body force term:I

qVo

dA � ½mðrwÞT þ kI trðrwÞ� þ
Z
Vo

qf dV¼
X
f

mfAf � ðrwÞTf

þ
X
f

kfAf � I trðrwÞf þ ðqfVÞ0
ð11Þ

Here the subscript f denotes the face value. The face value of rw in Eq. (11) is found
as the linear interpolant of the gradients in the cells C0 and C1. In this approach, the
primary diffusion term [the first term on the RHS of Eq. (10)] is treated implicitly,
but the secondary gradient termWf and all the terms in Eq. (11) are treated explicitly.
The resulting scheme has implicit coupling only to face-neighbor displacements in
the same coordinate direction, but not to displacements in other coordinate direc-
tions. The computational stencil thus consists only of face-neighbor cells of C0. This
approach has previously been taken by Demirdžić and Muzaferija [24, 25].
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Formulation 2: Complete Linearization of Stress Tensor. The explicit
treatment described above has poor convergence rate and requires extensive under-
relaxation to obtain convergence of iterative procedures. This is because the explicit
part of the stress tensor ensures coupling between different directions, and hence car-
ries more information than the implicit part [26]. This motivates us to implement
complete linearization of the stress tensor. We first calculate the cell gradient using
the linear least-squares approach [50] in the following way:

r/0 ¼
X
nb

gnb /nb � /0ð Þ ð12Þ

where /0 can be any scalar or vector in the cell C0, /nb is the value of the correspond-
ing scalar or vector in the neighboring cell Cnb, and gnb is a function of the mesh
geometry. We then define Gij as

Gij ¼
qwi

qxj
ð13Þ

where wi is the ith component of displacement vector. The derivative of Gij with
respect to the kth component of the displacement vector is given as

q
qw0;k

G0;ij

� �
¼ �

X
nb

gnb;jdik

q
qwnb;k

G0;ij

� �
¼ gnb;jdik

ð14Þ

Here G0,ij denotes the value of Gij in the cell C0, w0,k and wnb,k denote the kth compo-
nent of the displacement vector in the cells C0 and Cnb, respectively, and dik is the
Kronecker delta. The force on any face f is given by

F ¼ mAf � ðrwÞf þ mAf � ðrwÞTf þ kAf � I trðrwÞf ð15Þ

Again, the subscript f denotes the face value. We denote the individual components
of F as F1, F2, and F3, where F1, F2, and F3 are given by

F1 ¼ mAf � ðrwÞf
F2 ¼ mAf � ðrwÞTf
F3 ¼ kAf � I trðrwÞf

ð16Þ

It may be shown that

qF1i

qGkl
¼ mAldik

qF2i

qGkl
¼ mAkdil

qF3i

qGkl
¼ kAidkl

ð17Þ
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The required components of the Jacobian are qFi=qwj, which may be computed using
the chain rule as

qFi

qwj
¼

X
k

X
l

qF1i

qGkl
þ qF2i

qGkl
þ qF3i

qGkl

� �
qGkl

qwj
ð18Þ

Since the face gradient rw is an average of the gradients in cells C0 and C1, the
derivative qFi=qwj is nonzero with respect to the displacements wk in cells C0, C1,
and all their face-neighbor cells. The Jacobian entries qF2i=qwjand qF3i=qwj lead to
implicit coupling between the displacements in different coordinate directions. Fur-
thermore, their inclusion expands the normal stencil of cells included in typical
cell-centered finite-volume discretizations such as those used in [24, 25].

The Jacobian of the residual for cell C0 is

qR
qw

¼
X
f

qF
qw

þ qS
qw

� �
ð19Þ

where R is the residual of the discrete equation and the summation is over all the
faces of the cell. The first term in Eq. (19) is the contribution to the Jacobian of
the forces on the faces of the cell C0, while the second term is the contribution of
source and unsteady terms. Newton linearization of the equation R¼ 0 employs
the Jacobian in Eq. (19). This procedure enables the complete linearization of the
governing structural deformation equation. This allows the fully implicit treatment
of the stress tensor and dramatically improves the convergence rate.

To our knowledge, this is the first published attempt to linearize the entire
stress tensor in a cell-based finite-volume scheme. Nearly all published FVM-based
stress analysis techniques employ Formulation 1 [24, 25]. Jasak and Weller [26]
sought to improve the convergence of their cell-based scheme through partial line-
arization, including parts of the transpose and divergence terms in the diffusion
term, but leaving the rest of the stress tensor explicit. In our experience, this
approach alleviates convergence problems somewhat, but does not entirely cure
them.

4. STRUCTURE–ELECTROSTATICS INTERACTION IN MEMS

A schematic of the MEMS device is shown in Figure 3. The electrostatic field in
the air gap is governed by the following equation:

r2/ ¼ 0 in air ð20Þ

Here / represents the electrostatic potential. The surface charge density rt on the top
electrode can be represented as

rt ¼ �eair
q/
qn

� �
air

ð21Þ
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where eair is the permittivity of air, and n represents the normal to the surface. An
analytical expression for the electrostatic force Felec on the top electrode can be
obtained as [51]

Felec ¼ b

Z L

0

r2
t ðxÞ
2eair

� �
dx ð22Þ

where b and L represent the width and length of the electrode. The top electrode is
assumed to be an equipotential surface. The deforming membrane and the domain
outside it are separately meshed, with the two meshes being conformal at the inter-
face, as shown in Figure 4a.

Figure 3. Simplified representation of an RF MEMS (color figure available online).

Figure 4. RF MEMS: (a) undeformed state; (b) deformed state (color figure available online).

UNSTRUCTURED FINITE-VOLUME METHOD FOR MEMS 433

D
ow

nl
oa

de
d 

by
 [

th
e 

L
A

N
L

 R
es

ea
rc

h 
L

ib
ra

ry
] 

at
 1

2:
10

 0
6 

Fe
br

ua
ry

 2
01

2 



The FVM discretization of the potential equation involves the integration of
Eq. (20) over the control volumes C0, and the application of the divergence theorem
to yield I

qVo

dA � ½r/� ¼
X
f

Af � ðr/Þf ¼ 0 ð23Þ

Here (r/)f represents the gradient of the electrostatic potential associated with face
f. For unstructured meshes, Eq. (23) can be decomposed into the primary gradient
and secondary gradient components [49], and written in the following way:

1

ds

Af � Af

Af � en
ð/1 � /0Þ þ jf ¼ 0 ð24Þ

where jf is the secondary gradient term associated with face f, and is nonzero for
nonorthogonal meshes only. As explained in [49], the first term in Eq. (24) is treated
implicitly, while the second is treated explicitly in the equation system.

5. INITIAL AND BOUNDARY CONDITIONS

5.1. Structure Model

For transient problems, w and qw=qt must be specified at time t¼ 0. The
boundary condition can be of the following types:

1. Specified displacement
2. Specified traction
3. Symmetry
4. Free surface (zero traction)

For the specified displacement boundary condition (Dirichlet boundary
condition) we have

wðrÞ ¼ wb r 2 A ð25Þ

where r is the position vector on the surface A, and wb is the specified displacement
vector on the surface of the boundary. For specified traction or free-surface (zero-
traction) boundary conditions (Neumann boundary conditions) we have

tðrÞ ¼ tb r 2 A ð26Þ

Here tb is the specified traction on the boundary. For symmetry boundary conditions
we have

wn ¼ 0
qwt

qn
¼ 0 ð27Þ

where n is the normal to the symmetry boundary surface, and wn and wt are the dis-
placement components normal and tangential to the symmetry surface.
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5.2. Electrostatics Model

For the electrostatics model, only two types of boundary conditions are used:

1. Specified potential
2. Specified potential gradient

For the specified potential boundary condition (Dirichlet boundary condition)
we have

/ðrÞ ¼ /b r 2 A ð28Þ

where r is the position vector on the surface A, and /b is the specified potential on the
surface of the boundary. For specified potential gradient boundary condition
(Neumann boundary condition) we have

d/
dr

ðrÞ ¼ /0
b r 2 A ð29Þ

Here /0
b is the specified potential gradient on the boundary.

6. MESH MOTION STRATEGY

The application of electrostatic force on the membrane causes the membrane to
deform, and distorts the domain on which the potential equation is solved, as shown
in Figure 4b. Hence a strategy for mesh deformation must be implemented. Mesh
deformation is handled following the procedure developed in [52]. To explain the
mesh deformation procedure, a sample 2-D mesh is shown in Figure 5. The domain
has fixed walls on the left and right sides, whereas the displacement is specified on the
top and bottom surfaces. First, for every internal node (is), the node on the moving
wall (iswall) that is closest to it is determined by an efficient KD-tree-based search
algorithm [53]. The distance between is and iswall is identified as d(is). The maximum
of all d(is) is denoted by dmax. Then the deformation dr(is) of the internal node is is

Figure 5. Nomenclature for mesh deformation.
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obtained as the product of a distance function f(is) and the specified deformation
dr(iswall) of the closest wall node iswall as follows:

drðisÞ ¼ f ðisÞdrðiswallÞ ð30Þ

The function f(is) is obtained using two exponential damping functions:

f ðisÞ ¼
f 22 ðisÞ

f 21 ðisÞ þ f 22 ðisÞ
ð31Þ

Here f1(is) and f2(is) are given by the following relations:

f1ðisÞ ¼
1� exp½�dðisÞ=dmax�

ðe� 1Þ=e ð32Þ

f2ðisÞ ¼
1� exp½1� dðisÞ=dmax�

ð1� eÞ ð33Þ

The function f(is) has a value close to 1 for internal nodes close to the moving walls,
and tends to 0 when d(is) approaches dmax. This produces a rigid grid near the walls
and far away from the walls. However, rest of the areas is elastic and can be easily
deformed. In large-deformation problems, the above procedure may not be sufficient
to produce a valid mesh. Thus the calculated deformation of every internal node is
further smoothed out using a spring analogy. The deformation dr

k
of node k is deter-

mined as the weighted average of the deformations of the neighboring nodes:

drk ¼
PnnodesðkÞ

i¼1 kidriPnnodesðkÞ
i¼1 ki

ð34Þ

Here nnodes (k) is number of nodes surrounding node k, and the weight ki is equal to
the inverse of the distance between the node k and the neighboring node i. This pro-
cedure ensures that if the mesh is dense in some sensitive regions of the domain, then
even after mesh deformation the mesh will remain dense in those regions.

7. SOLUTION METHODOLOGY

The flowchart for the solution methodology is shown in Figure 6. A sequential
solution procedure is used to couple structure and electrostatics. At the beginning of
each time step, the forces on the structure domain are computed, following which
one iteration of the structural solver is performed. The cell-centered structure displa-
cements thus obtained are interpolated to obtain nodal displacements, which are
then used to deform the structure. The nodal displacement for the structure mesh
at the structure–electrostatics interface is used as a specified displacement boundary
condition for deformation of the mesh on which the electrostatics model is solved.
The electrostatics mesh is then deformed using the previously described mesh
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deformation procedure, and the mesh metrics are recalculated. The electrostatics
model is then solved on the electrostatics mesh. The above procedures within each
time step constitute an outer iteration loop. If Formulation 2 is used for discretizing
the stress tensor for the structure, only one outer iteration need be performed within
each time step for linear elastic problems. However, for nonlinear problems, multiple
outer iterations are performed before time is advanced to the next time step.

For either domain (structure or electrostatics), the discretization procedure
described above gives rise to a set of linear algebraic equations of the form

Mxþ b ¼ 0 ð35Þ

where M is a symmetric and diagonally dominant N�N sparse matrix, x is a vector
containing the values of the displacement vector components at the N control
volumes, and b is the source vector. The system of algebraic equations can be solved
iteratively with a BCGSTAB solver [54]. Equation (35) can also be represented as

Mdþ R ¼ 0 ð36Þ

where R is the residual, and d is given as

d ¼ xkþ1 � xk ð37Þ

Here xk is the solution at the kth iteration.

Figure 6. Flowchart showing solution methodology.
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For the structural solution, if explicit source treatment is being used, it is not
necessary to solve the above system of equations to a tight tolerance, since the source
vector b contains explicit terms. Therefore reduction of residuals by an order of mag-
nitude is considered sufficient. In this case, once the above system of equations is
solved, the source vector b is updated using the newly available values of the dis-
placement vector and the process is repeated [24]. Thus it is necessary to have an
outer iteration loop, and the procedure is considered converged when the sum of
the normalized absolute residuals has decreased by 3–4 orders of magnitude for each
displacement component. For transient problems, this procedure is repeated for each
time step.

On the other hand, if the stress tensor is linearized completely, for linear elastic
problems, the system of discretized algebraic equations for the structure can be
solved within one outer iteration if the convergence criterion for inner iterations in
the linear solver is set to a low enough value. For transient problems, this procedure
is repeated for each time step.

8. RESULTS

In this section, we first present a number of tests of algorithm performance,
and then apply the proposed method to the solution of structure–electrostatics inter-
action in MEMS.

8.1. Comparison of Explicit and Implicit Stress Linearization

To test the efficacy of this linearization scheme, we study the problem of
steady-state deformation of a fixed-fixed beam due to uniform loading. A schematic
of the beam is shown in Figure 7. The solution to the problem is given by the
Euler-Bernoulli beam theory, and the deflection of the beam is given as

wy ¼
ax2ðL� xÞ2

24EI
ð38Þ

where a is the force per unit length, E is Young’s modulus, I is the second moment of
inertia, and L is the length of the beam. A 16� 160mesh is selected for this simula-
tion based on a mesh convergence study, and a plane stress condition is assumed.

Figure 7. Fixed-fixed beam subjected to uniform loading.
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Young’s modulus of the material is E¼ 200GPa, and Poisson’s ratio is n¼ 0.31.
The problem is solved by two methods. Formulation 1 denotes the case which
involves splitting up of the stress tensor into implicit and explicit parts, and Formu-
lation 2 denotes the case of complete linearization of the stress tensor. For Formu-
lation 1, the reduction of residuals by an order of magnitude is taken as the
convergence criterion for the inner iteration loop in the linear solver, while the
reduction of the global residuals by 8 orders of magnitude is taken as the conver-
gence criterion for the outer iteration loop. For Formulation 2, the reduction of
the residuals by 9 orders of magnitude is set as the convergence criterion for both
the inner and outer iteration loops. Formulation 1 took 998 outer iterations and
113.67 s, whereas Formulation 2 took only 1 outer iteration and 0.57 s for com-
pletion. This shows that the complete linearization scheme in Formulation 2 has
decreased the computational time by approximately a factor of 200. Therefore this
scheme will henceforth be used to discretize the governing equations for all structural
problems described in this article.

8.2. Static Deformation of Fixed-Free Cantilever Beam

The first verification test of the FVM solver consists of a cantilever beam,
shown in Figure 8, with concentrated load at the free end [29]. To simulate this prob-
lem, a zero-displacement boundary condition is specified on the surface AD, whereas
traction-free boundary conditions are specified on the surfaces AB, BC, and CD. A
downward vertical surface force is specified on the face of the control volume
adjacent to the node C, and directly added to the force balance for that control vol-
ume. A plane stress condition is used for this problem. Young’s modulus of the
material is E¼ 210GPa, and Poisson’s ratio is n¼ 0.25. The horizontal and vertical
displacements of node C can be derived analytically as wx¼�0.3125 mm and wy¼
�2.16 mm. A mesh convergence study is performed on this problem. Table 1 shows
the percent errors in the x displacement of node C for different mesh sizes. The errors
are computed with respect to the analytical horizontal displacement for node C.
Results show that the error decreases to 0.25% for the 32� 320mesh. The FVM
displacements of node C obtained with this mesh are wx¼�0.3117 mm and wy¼
�2.153 mm. The results show that the FVM scheme accurately calculates the
displacements for node C.

Figure 8. Cantilever beam with concentrated load at the free end.
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8.3. Stress Concentration around Circular Hole

The model problem [24, 26, 55] consists of a plate with a circular hole which is
subjected to unidirectional tensile load, as shown in Figure 9. For infinitely large
plates in which the hole radius is small compared to the plate dimensions, the ana-
lytical stress distribution is given by [56]

rxx ¼ tx 1� a2

r2
3

2
cos 2hþ cos 4h

� �
þ 3

2

a4

r4
cos 4h

� �
ryy ¼ tx � a2

r2
1

2
cos 2h� cos 4h

� �
� 3

2

a4

r4
cos 4h

� �
rxy ¼ tx � a2

r2
1

2
sin 2hþ sin 4h

� �
þ 3

2

a4

r4
sin 4h

� � ð39Þ

where a is the radius of the hole, tx is the applied tensile load, and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and

h¼ tan�1y=x represent the polar coordinates. Due to the symmetry of the problem,
only one-fourth of the domain is simulated, as shown in Figure 9. Tractions calcu-
lated from the analytical solution are imposed as boundary conditions on faces BC
and CD, whereas symmetry boundary conditions are imposed on faces AB and DE.
The circular arc AE is assumed to be a free surface (zero traction). We use nonortho-
gonal meshes for this problem. A sample mesh for this problem is shown in
Figure 10. A plane strain condition is assumed. Young’s modulus of the material
is E¼ 107 Pa, and Poisson’s ratio is n¼ 0.3. The applied tensile load is tx¼ 104 Pa.

Table 1. Mesh convergence study for static deformation of cantilever beam

Mesh size Percent error in x displacement

4� 40 23.39

8� 80 11.61

16� 160 4.59

32� 320 0.25

Figure 9. Plate with a circular hole at the center loaded by uniform unidirectional tensile stress

(OA¼ 0.5m, AB¼ED¼ 1.5m, BC¼CD¼ 2m).
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A mesh convergence study is first performed. For this purpose, the volume-weighted
root-mean-square (RMS) errors in the stresses are computed for different mesh sizes.
The RMS error is defined as

RMSrxx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Viðrxx;analytical � rxx;fvmÞ2PN

i¼1 Vi

s
ð40Þ

Here Vi denotes the volume of cell i. The volume-weighted RMS errors in rxx are
presented in Table 2. It is observed that the RMS error is less than 0.2%, with respect
to the applied tensile load of tx¼ 104 Pa, for even the coarsest mesh with 1,450 cells,
and decreases to 0.006%, for the mesh with 98,000 cells. Therefore, this mesh is used
for plotting the contours of the stress distribution. The contours of rxx, ryy, and rxy

are shown in Figure 11 for the FV scheme. The contours of the percentage absolute
errors in the stresses, with respect to the applied tensile load, are plotted in Figure 12
for the mesh with 1,450 cells. The errors are defined as

dxx ¼ absðrxx;analytical � rxx;fvmÞ
tx

� 100% ð41Þ

Figure 10. Computational mesh for stress concentration problem.

Table 2. Mesh convergence study for stress con-

centration around a circular hole

Mesh size RMSrxx
ðPaÞ

1,450 16.32

5,800 5.28

23,200 1.79

98,000 0.62
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The contours show that the errors are maximum in the area of stress concentration.
However, mesh skewness also leads to some errors.

8.4. Transient Vibration of Fixed-Free Beams

The temporal accuracy of the FVM solver is tested by studying the undamped
vibration of a fixed-free cantilever beam subjected to shear stress at the free end. A
schematic of the beam is shown in Figure 13. The natural frequency X of a fixed-free
cantilever beam [57] can be derived as

X ¼ 3:516

2pL2

ffiffiffiffiffiffiffiffi
EI

qbh

s
ð42Þ

where b is the width, h is the thickness, and q is the density of the beam. Young’s
modulus, Poisson’s ratio, and the density of the beam are taken to be E¼ 200GPa,
n¼ 0.31, and q¼ 7,854 kg=m3, respectively. For the above fixed-free beam, the natu-
ral frequency is calculated according to Eq. (42) to be X¼ 8.15Hz. To simulate this
problem, the beam is assumed to have w¼ 0 and qw=qt¼ 0 as the initial conditions.
At time t¼ 0, a shear stress s¼ 1,000 Pa is applied on the right face. The top and bot-
tom faces are assumed to be traction-free surfaces, and the left face is constrained to

Figure 11. Contours of stress (Pa) for FVM scheme: (a) rxx; (b) ryy; (c) rxy (color figure available online).

Figure 12. Contours of percentage absolute errors in stresses: (a) dxx; (b) dyy; (c) dxy (color figure available
online).

442 S. DAS ET AL.

D
ow

nl
oa

de
d 

by
 [

th
e 

L
A

N
L

 R
es

ea
rc

h 
L

ib
ra

ry
] 

at
 1

2:
10

 0
6 

Fe
br

ua
ry

 2
01

2 



have zero displacement. The applied shear stress on the right face is linearly ramped
up for the first 0.02 s, and then maintained at s¼ 1,000 Pa. This causes the beam to
vibrate in a sinusoidal motion with the above-mentioned natural frequency. A plane
stress condition is assumed and a 9� 100mesh is used for this problem. The time
step in this problem is taken to be Dt¼ 10�5 s, which gives a maximum wave speed
Courant number of Co¼ 0.5, where the Courant number Co is defined as

Co ¼ u
Dt
Dx

ð43Þ

Here u is the unconfined solid wave speed given by

u ¼
ffiffiffiffi
E

q

s
ð44Þ

The deflection at the neutral axis on the free end of the beam is shown in Figure 14 as
a function of time. The FVM result for natural frequency of the beam is
X¼ 8.106Hz. Thus the FVM result for natural frequency is within 0.55% of the ana-
lytical result.

Figure 13. Cantilever beam subjected to shear stress at the free end.

Figure 14. Temporal variation of the deflection at the free end of the cantilever beam.
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8.5. Structural Deformation Due to Electrostatic Actuation in MEMS

The FV solver is next applied to study structure–electrostatic interaction in
MEMS. The goal is to study structural deformation of a MEMS device, treated as
a fixed-fixed beam under electrostatic actuation. A schematic of the MEMS device
is shown in Figure 3. The electrostatic force is treated as a surface force on the
top electrode, and is assumed to be a nonlinear function of the gap width. Young’s
modulus of the material is E¼ 200GPa, and Poisson’s ratio is n¼ 0.31. The beam
has length of 400 mm and thickness of 4 mm. A 20� 1,000 mesh is selected for this
simulation based on a mesh convergence study, and a plane stress condition is
assumed. For this problem the governing equation for electrostatic potential,
Eq. (20), is not solved in the air gap. Instead, to obtain the electrostatic force on
the top electrode, the potential gradient is approximated as

q/
qy

� �
air

¼
/top � /bottom

Dh
ð45Þ

where Dh is the width of the air gap, and /top and /bottom represent the electrostatic
potential on the top electrode and bottom electrode, respectively.

The boundary conditions are as follows: The left and right sides are specified as
zero-displacement surfaces, the top surface is a traction-free surface, while the elec-
trostatic force calculated from Eq. (22) is applied on the bottom surface. If the
deflection of the top electrode is small, then the electrostatic force can be assumed
to be a constant. In that case, the problem becomes that of a fixed-fixed beam sub-
jected to uniform loading of the magnitude of the electrostatic force per unit length.
Then the deflection of the beam is given by Eq. (38). The deflection expression in
Eq. (38) can be nondimensionalized in the following way to give a potential
difference independent expression for the deflection:

w�
y ¼ wy

24EI

a

� �
ð46Þ

For cases where the electrostatic force is variable and is a nonlinear function of the
gap width, the deflection of the top electrode is nondimensionalized in the same man-
ner as in Eq. (46), with a calculated for the corresponding constant electrostatic force
case with the same potential difference applied between the two electrodes. The non-
dimensional deflection of the beam is calculated for potential differences of 10V,
50V, 100V, and 160V, and the results are shown in Figure 15, which also shows
the nondimensional deflection for the constant electrostatic force case. As is evident,
for a 10V potential difference between the top and bottom electrodes, the deflection
calculated by the FVM solver is almost the same as the deflection for the
constant-force case. The nondimensional deflection calculated for the variable-force
case increases with an increase in the potential difference between the two electrodes,
and for 160V applied potential difference between the two electrodes, the maximum
nondimensional deflection is greater by around 36% than the corresponding
constant-force case. The maximum deflection at the bottom surface of the top elec-
trode is shown in Table 3 for the variable electrostatic force case. It is observed that
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for 160V applied potential difference between the two electrodes, the maximum
deflection of the top electrode is �6.74� 10�7m.

8.6. Pull-In Voltage in MEMS

The methodology developed in this article is used next to study quasi-static and
dynamic pull-in voltages for an RF MEMS switch shown in Figure 3. Young’s
modulus of the material is E¼ 200GPa, and Poisson’s ratio is n¼ 0.31. The top elec-
trode has length of 400 mm and thickness of 4 mm. When a dc voltage is applied
across the two surfaces, an electrostatic force Felec, given by Eq. (22), is induced
which pulls down the top electrode. The electrostatic force is a nonlinear function
of the gap width, and varies as Felec� g�2, where g is the gap width. The restoring
mechanical force Fm varies linearly as the change in gap width, Fm� g0 – g, where
g0 is the zero-voltage gap width. An equilibrium position is reached when these
two forces balance each other. However, as the dc voltage is increased beyond a criti-
cal limit called the pull-in voltage VPI, the restoring mechanical force can no longer

Figure 15. Nondimensional deflection of the top electrode (color figure available online).

Table 3. Maximum deflection of the top electrode for

the variable-force case

Potential difference (V) Maximum deflection (m)

10 �1.94� 10�9

50 �4.94� 10�8

100 �2.12� 10�7

160 �6.74� 10�7
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balance the electrostatic force, and the gap closes. A simplified expression of pull-in
voltage is obtained as [58]

VPI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Keffg

3
0

27e0Aeff

s
ð47Þ

where e0 is the permittivity of free space. For a fixed-fixed beam, Keff is given as

Keff ¼
32bEEbh3

L3
ð48Þ

where bEE is the modified Young’s modulus. bEE is equal to E if b� h, and is equal to E=
(1� n2) if b> 5h. The effects of residual stress, nonlinear stiffening, and axial stretch-
ing have been neglected in deriving Eq. (47). Furthermore, if the effects of charge
redistribution and fringing fields are neglected, then the effective electrode area Aeff

can simply be expressed as bL.
Two cases are simulated to study the pull-in phenomenon. In the first case, the

bottom electrode has the same length as the top electrode, as shown in Figure 3. In
the second case, the bottom electrode has a length of 80 mm, as shown in Figure 16. A
20� 1,000 mesh is selected for both the structural solver and the electrostatics solver.
To obtain quasi-static deflection of the beam, the electrostatic field is first solved in
the air gap using Eq. (20). The electrostatic force on the top electrode is then calcu-
lated using Eq. (22). One outer iteration for the structural deformation of the top
electrode is then performed. The cell-based displacements are subsequently interpo-
lated to obtain nodal displacements, which are used to deform the structural mesh.
The mesh for the air gap is then adjusted using the nodal displacements on the top
electrode–air interface as a Dirichlet boundary condition and employing distance-
weighted smoothing of the mesh. The electrostatic field in the air gap is again solved
using Eq. (20), and the entire process is repeated until convergence. For the dynamic
analysis, the entire procedure is repeated over a number of time steps. The time step
in the dynamic analysis is taken to be Dt¼ 8.8� 10�9 s, which is about 1=1,000th of
the pull-in time.

The maximum deflection at the bottom surface of the top electrode is shown in
Figure 17 as a function of the applied voltage. It is observed that for the case in
which the bottom electrode has the same length as the top electrode, the pull-in volt-
age is around 181V. The analytical solution for pull-in voltage is also shown in the

Figure 16. RF MEMS with partial bottom electrode (color figure available online).
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plot. It is observed that the analytical pull-in voltages with actual and modified
Young’s modulus are around 168V and 177V, respectively. It should be noted that
the analytical solution assumes that the bottom electrode has the same length as the
top electrode. It is further seen that the pull-in voltage for the case of partial bottom
electrode is around 270V. With partial bottom electrode, the electrostatic force is
applied only over the middle region of the beam. Thus it requires a larger force to
deform the structure, which results in a higher pull-in voltage. The dynamic pull-in
voltage for the case when both of the electrodes have the same length is found to be
165V. Thus the dynamic pull-in voltage is less than the corresponding quasi-static
pull-in voltage by around 9%. This result is similar to what has been reported in [59].

9. CONCLUSIONS AND FUTURE WORK

In this article, a cell-based FV solver for structural analysis has been developed.
The FVM scheme involves second-order spatial discretization and first-order
temporal discretization of the governing equation for structural dynamics. The dis-
cretized algebraic equations are solved using a BCGSTAB solver. The convergence
rate of the FV methodology is improved dramatically by implementing complete lin-
earization of the stress tensor, which enables the fully implicit FVM discretization of
the governing equation. This enables the computation of linear structural defor-
mation problems within one iteration of the outer loop, and decreases the computa-
tional time by approximately a factor of 200. The FVM solver has been verified on
three different test cases: (1) deformation of a fixed-free beam with concentrated load
at the free end, (2) stress concentration around a circular hole, and (3) transient
vibration of fixed-free beams. The FVM solver for structural dynamics is then
applied to study the deformation of a movable electrode, treated as a fixed-fixed
beam, under electrostatic actuation. Results indicate that the maximum nondimen-
sional beam deflection increases by around 36% at a potential difference of 160V
if the electrostatic force is assumed to be a nonlinear function of the gap width,

Figure 17. Quasi-static pull-in voltage for RF MEMS (color figure available online).
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instead of being a constant. The quasi-static and dynamic pull-in voltages for the RF
MEMS device are then evaluated. It is found that the simulation value of the pull-in
voltage (181V) matches relatively well with the approximate theoretical
value (177V). It is also observed that the dynamic pull-in village is less than the
quasi-static pull-in voltage by around 9%.

The article demonstrates that robust and accurate solvers based on the finite-
volume method may be developed for structure–electrostatics interaction. Efforts are
underway to couple the structural solver to a finite-volume-based fluid flow solver to
study dynamic structural deformation under electrostatic loads. Results from this
effort will be reported in due course.
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